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Executive summary and Recommendations

• Monitoring of growth and physical development
and the use of growth charts are essential in the
continuous care of children and adolescents with
type 1 diabetes (E).

• Screening of thyroid function by measurement
of thyroid stimulating hormone (TSH) and anti-
thyroid peroxidase antibodies is recommended at
the diagnosis of diabetes (A) and, thereafter, every
second year in asymptomatic individuals without
goiter or in the absence of thyroid autoantibodies.
More frequent assessment is indicated otherwise (E).

• Screening for celiac disease should be performed
at the time of diabetes diagnosis, and every 1–2 yr
thereafter (B). More frequent assessment is indicated
if the clinical situation suggests the possibility of
celiac disease or the child has a first-degree relative
with celiac disease (E).

• Screening for celiac disease is based on the
detection of Immunoglobulin A (IgA) antibodies:
tissue transglutaminase (tTG-A) and/or endomysial
(EMA).

• Screening for IgA deficiency should be performed
at diabetes diagnosis. In people with confirmed IgA
deficiency, screening for celiac disease should be
performed using IgG specific antibody tests (tTG
IgG and/or EM IgG).

• Children with type 1 diabetes detected to have celiac
disease on routine screening should be referred to
a pediatric gastroenterologist, where available, and
on confirmation of the diagnosis receive education
and support from an experienced pediatric dietitian.
Educational materials for patients and families
should be made available (E).

• Diabetes care providers should be alert for the
symptoms and signs of Addison’s disease (adrenal
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failure) in children and youth with type 1 diabetes
although the occurrence is rare (E).

• Prevention of lipohypertrophy includes rotation
of injection sites with each injection, using larger
injecting zones and non-reuse of needles (E).

• There is no established therapeutic intervention for
lipodystrophy, necrobiosis lipoidica, or limited joint
mobility (LJM) (E).

• Screening for vitamin D deficiency, particularly in
high-risk groups, should be considered in young
people with type 1 diabetes and treated using
appropriate guidelines (E).

Growth, weight gain, and pubertal
development

Monitoring of growth and physical development, using
appropriate percentile charts and taking mid-parental
height into account, are crucial in the care of children
and adolescents with diabetes. This includes plotting
of anthropometric measurements prior to diagnosis,
where available.

Greater height prior to and at diagnosis of type
1 diabetes has been reported frequently (1–7). The
precise mechanism for this and whether or not this
increased height is maintained is unclear. However,
the observation that younger children have the highest
BMI suggests pre-natal or early life triggers influence
both height and weight gain before diabetes onset (8,
9), as proposed by the ‘accelerator hypothesis’ (10).

There is considerable evidence that patients with
suboptimal glycemic control show a decrease in height
velocity, while better controlled patients maintain
their height advantage (11–13). Insulin is a major
regulator of the growth hormone (GH)/insulin-like
growth factors (IGFs) axis; adequate insulin secretion
and normal portal insulin concentrations are needed
to maintain normal serum concentrations of IGFs and
IGF-binding proteins, and to promote growth (14).
The use of multiple daily insulin injection regimens,
insulin analogs, and new technologies including insulin
pumps have led to more physiological circulating
insulin concentrations, thus improving GH/IGFs
alterations (14) and height outcomes, independent of
glycemic control (15). The effect of poor glycemic
control on growth appears to be exacerbated during
puberty, a time of physiological insulin resistance.

Mauriac syndrome, characterized by growth failure,
hepatomegaly with glycogenic hepatopathy and
steatosis, and late pubertal development, is an uncom-
mon complication in children with persistently poorly
controlled diabetes (16, 17). Insulin insufficiency,
celiac disease, and other gastrointestinal disorders
should be considered in this setting.

There is no role for human GH therapy in the poorly
growing child with diabetes, unless it is associated with

GH deficiency (18), however the diagnosis may be ham-
pered by the high levels of GH, low IGF-1 and low GH-
binding protein observed in type 1 diabetes (19–24).

Once the child or adolescent has reached a satisfac-
tory weight after diagnosis, excessive weight gain may
indicate high energy intake, and this may be related to
excessive exogenous insulin. Excessive weight gain is
more common during and after puberty, as well as in
those with diagnosis of diabetes in puberty (8, 25). The
Diabetes Control and Complications Trial and other
studies reported increased weight gain as a side effect of
intensive insulin therapy with improved glycemic con-
trol (12, 25–27). As obesity is a modifiable cardiovas-
cular risk factor, careful monitoring and management
of weight gain should be emphasized in diabetes care.

Girls seem to be more at risk of overweight (25),
a recognized risk factor for later development of
disturbed eating behavior and eating disorders (28, 29).
In association with increased weight is also the risk of
ovarian hyperandrogenism, hirsutism, and polycystic
ovarian syndrome (30–32). In a recent study of hyper-
androgenic adolescents with type 1 diabetes, metformin
treatment significantly decreased serum androgens
compared with placebo. Metformin therapy did not,
however, significantly affect clinical parameters, such
as hirsutism, ovulation, and glycemic control; but
therapy duration of only 9 months is generally thought
to not be long enough to impact on hirsutism (33, 34).

As increased doses of insulin are usually required
during puberty, it is important to remember to
reduce the dose when IGF-1 levels and insulin
requirements decline, typically in late adolescence or
young adulthood (24, 35).

Associated autoimmune conditions

Diabetes-associated autoantibodies, including islet
cell antibodies (ICA), insulin autoantibodies (IAA),
glutamic acid decarboxylase (GAD65), the protein
tyrosine phosphatase related molecules IA-2 (ICA512)
and IA-2ß (phogrin), and/or zinc transporter-8 (ZnT-8)
are observed in the overwhelming majority of children
en route to clinical type 1 diabetes (36). A higher
proportion of children with type 1 diabetes have also
other detectable organ-specific autoantibodies (e.g.,
thyroid and adrenal) than children from the general
population (37–39). GAD and ZnT8A antibodies are
associated with thyroid autoimmunity (38).

Family members of children with diabetes are more
likely to have autoantibodies and other manifestations
of autoimmune disease than the general population
(40–42).

Hypothyroidism

Thyroid disease is one of the most common
autoimmune diseases in children with type 1 diabetes,
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the other being celiac disease. Thyroid disease occurs
more frequently in children and adults with type
1 diabetes than in the general population. Primary
or subclinical hypothyroidism due to autoimmune
thyroiditis occurs in approximately 3–8% of young
people with type 1 diabetes (43, 44), with an incidence
ranging from 0.3 to 1.1 per 100 patient years (44, 45)
of children and adolescents with diabetes. Antithyroid
antibodies can be detected in up to 29% of individuals
during the first years of type 1 diabetes (37, 44),
and are strongly predictive for the development of
hypothyroidism, with a risk ratio of approximately
25 (44, 46). Thyroid antibodies are observed more
frequently in girls than in boys, often emerging along
with pubertal maturation (44) and also associated with
age and diabetes duration (44, 46).

Clinical features may include the presence of a
painless goiter, increased weight gain, retarded growth,
tiredness, lethargy, cold intolerance, dyslipidemia
and bradycardia (43). Glycemic control may not be
significantly affected.

Hypothyroidism is confirmed by demonstrating a
low free thyroxine and a raised TSH concentration.
Importantly, compensated hypothyroidism may be
detected in an asymptomatic individual with a normal
thyroxine level and a modestly increased TSH.

Treatment of thyroid disease in type 1 diabetes is
the same as that used in the general population and
is based on replacement with oral l-thyroxine (T4)
sufficient to normalize TSH levels. This may allow
regression of goiter, if present.

Hyperthyroidism

Hyperthyroidism is less common than hypothyroidism
in association with type 1 diabetes, with a reported
prevalence of 3–6% in children (44), but is still more
common than in the general population. It may be
due to Graves’ disease or the hyperthyroid phase of
Hashimoto’s thyroiditis.

Hyperthyroidism should be considered if there is
unexplained difficulty in maintaining glycemic control,
weight loss without loss of appetite, agitation, tachy-
cardia, tremor, heat intolerance, thyroid enlargement,
or characteristic eye signs.

Hyperthyroidism is treated with anti-thyroid drugs
such as carbimazole or propylthiouracil; carbimazole
is the preferred treatment in children due to the
increased risk of liver failure in patients treated with
propylthiouracil (47). Beta-adrenergic blocking drugs
are helpful during the acute phase of thyrotoxicosis to
control tachycardia and agitation. Treatment options
for persistent or recurrent hyperthyroidism include
surgery or radioactive iodine.

Celiac disease

The prevalence of celiac disease ranges from 1–10%
of children and adolescents with diabetes with an
incidence of approximately 8 per 1000 patients per
year (45, 48–51). The risk of celiac disease is inversely
and independently associated with age at diagnosis of
diabetes, with the greatest risk in those with diabetes
diagnosed before 5 yr of age (50–52). While a large
proportion of cases of celiac disease are diagnosed
within 2 yr after diabetes presentation and the majority
within 10 yr of screening in the pediatric setting, the
diagnosis can be made beyond this period (48, 51).

Celiac disease is often asymptomatic (48) and not
necessarily associated with poor growth or poor dia-
betes control (although it should be excluded in such sit-
uations). Any child with gastrointestinal signs or symp-
toms including chronic or intermittent diarrhea and/or
constipation, chronic abdominal pain/distention, flatu-
lence, anorexia, dyspeptic symptoms, unexplained poor
growth, weight loss, recurrent aphthous ulceration,
or anemia should be investigated (50). Undiagnosed
celiac disease has also been associated with increased
frequency of hypoglycemic episodes and a progres-
sive reduction in insulin requirement over a 12-month
period prior to diagnosis (53).

Screening for celiac disease is based on the detection
of IgA antibodies (tTG-A and/or EMA); both tests
demonstrate sensitivity and specificity >90% (45).
Antibodies against deamidated forms of gliadin
peptides may also improve the specificity of testing
for celiac disease (55). Laboratories reporting celiac
disease-specific antibody test results for diagnostic use
should continuously participate in quality control pro-
grams at a national or international level. Recent guide-
lines recommend testing for HLA-DQ2 and HLA-DQ8
because celiac disease is unlikely if both haplotypes
are negative (56). Adding non-human leukocyte
antigen (non-HLA)-susceptible variants to common
HLA testing can further improve celiac disease risk
prediction (57). However, in people with diabetes,
the type 1 diabetes risk alleles (DR3 and DR4) are
in linkage disequilibrium with DQ2 and DQ8 and
therefore HLA genotyping is likely to exclude celiac
disease in only a small proportion of patients (58).

IgA deficiency (which is present in 1:500 in the
general population) is more common in people
with type 1 diabetes and those with celiac disease
(59). Therefore some guidelines recommend routine
measurement of total IgA to exclude IgA deficiency,
while an alternative strategy is to measure IgA only
if the initial screening test using tTG-A and/or EmA
is negative. If the child is IgA deficient, IgG-specific
antibody tests (tTG or EM IgG, or both) need to be
used for screening. This is important because celiac
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disease may be more common in those with IgA
deficiency than in the general population (60).

In the presence of an elevated antibody level, a small
bowel biopsy is needed to confirm the diagnosis of
celiac disease by demonstrating subtotal villus atrophy,
as outlined in the Marsh Classification (61). For
symptomatic children with high tTG-A titers (>10
times the upper limit of normal), recent guidelines
recommend that celiac disease can be diagnosed
without duodenal biopsy, if the endomysial IgA level
is also positive and the patient carries HLA DQ2 or
DQ8 (56, 62). Such a change in practice, which is
inconsistent with other guidelines (63), will require
prospective evaluation to become generally accepted.

A gluten-free diet normalizes the bowel mucosa and
frequently leads to disappearance of antibodies, but
may not necessarily lead to improved glycemic control
(50, 64). The aims of the gluten-free diet include
reduction of the risk of subsequent gastrointestinal
malignancy and conditions associated with subclinical
malabsorption (osteoporosis, iron deficiency, and
growth failure) (50, 65, 66). Long-standing celiac
disease may be associated with an increased risk of
retinopathy (67), while non-adherence to a gluten free
diet may increase the risk of microalbuminuria (68).

Children with proven celiac disease should be
referred to a pediatric gastroenterologist, where
available, and receive education and support from an
experienced pediatric dietitian. Educational materials
for patients and families should be made available.

Vitiligo

Vitiligo is an acquired pigmentary disorder charac-
terized by a loss of melanocytes resulting in white
spots or leukoderma (69). It is a common autoimmune
condition associated with type 1 diabetes and is present
in approximately 1–7% of people with type 1 diabetes
(70). Treatment is difficult and multiple therapies have
been tried with little success. Patients should be advised
to avoid the sun and to use broad-spectrum sunscreen.
As vitamin D deficiency is common in people with
vitiligo, measurement of 25-hydroxyvitamin D levels
and supplementation should be considered (71).
For localized vitiligo, topical corticosteroids may be
effective.

Primary adrenal insufficiency (Addison’s disease)

Up to 2% of patients with type 1 diabetes have
detectable anti-adrenal autoantibodies (37, 72, 73). The
HLA DRB1*04-DQB1*0302 (primarily DRB1*0404)
and DRB1*0301-DQB1*0201 haplotypes define high-
risk subjects for adrenal autoimmunity (74), while
homozygosity for the major histocompatibility
complex (MHC) (HLA) class I chain-related gene A

(MICA) polymorphism 5.1 defines those at highest
risk for progression to overt Addison’s disease (75).
Addison’s disease may be associated with type 1
diabetes as part of the autoimmune polyglandular
syndromes (APS-1 and APS-2) (76). APS 1,
also known as autoimmune polyendocrinopathy-
candidiasis-ectodermal dystrophy (APECED), often
presents in childhood and is characterized by
the development of adrenal insufficiency, chronic
mucocutaneous candidiasis, and hypoparathyroidism.
It is caused by a mutation in the autoimmune regulator
gene (AIRE) on chromosome at chromosome 21q22.3
(77, 78). In APS-2 (also known as Schmidt Syndrome),
the combination of adrenal insufficiency and type 1
diabetes is more common not only in adults (79), but is
also seen in children in association with autoimmune
thyroiditis (80).

Addison’s disease is suspected by the clinical picture
of frequent hypoglycemia, unexplained decrease in
insulin requirements, increased skin pigmentation, las-
situde, weight loss, hyponatremia, and hyperkalemia.
The diagnosis is based on the demonstration of a
low cortisol response to stimulation with Adrenocor-
ticotropic hormone (ACTH) and evaluation for the
presence of adrenal antibodies, although a negative
antibody result does not exclude adrenal pathology.
Treatment with a glucocorticoid is urgent and lifelong.
In some cases the therapy has to be supplemented with
a mineralocorticoid such as fludrocortisone.

In asymptomatic children with positive adrenal
antibodies detected on routine screening, a rising
ACTH level suggests a failing adrenal cortex and the
development of primary adrenal insufficiency.

The immunodysregulation polyendocrinopathy X-
linked syndrome (IPEX) is another rare disorder
associated with diabetes in early childhood, severe
enteropathy, and autoimmune symptoms due to a
mutation in the forkhead box P3 (FOX-P3) gene,
which encodes a transcription factor essential for the
development and function of regulatory T cells (81, 82).

Lipodystrophy (lipoatrophy
and lipohypertrophy)

Lipoatrophy is now seen infrequently with the use of
human insulin, and is reported in <1% of patients
with type 1 diabetes (83). Case reports have described
lipoatrophy in patients treated with insulin analogs,
including lispro, glargine, aspart, and detemir (84–86),
but it is still a rare side effect. Lipoatrophy has
also been described in association with Hashimoto’s
thyroiditis and celiac disease; the authors speculated
that an immune complex-mediated inflammation may
contribute to the development of lipoatrophy (87).

Lipohypertrophy is a frequent complication of
insulin therapy. Its detection requires both visualiza-
tion and palpation of injecting sites, as some lesions
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can be more easily felt than seen. Normal skin can be
pinched tightly together, while lipohypertrophy cannot
(88). Lipohypertrophy has been found in up to 48% of
those with type 1 diabetes and is associated with higher
hemoglobin A1c (HbA1c), greater number of injec-
tions, and longer duration of diabetes (83, 89, 90). Lack
of rotation of injection sites, use of small injection zones
and reusing needles have been consistently reported
as independent risk factors for lipohypertrophy (88,
89), while needle length does not have a recognized
association. Not only is it unsightly, but insulin may
be absorbed erratically and unpredictably from these
areas, affecting blood glucose control (91). Treatment
of lipohypertrophy involves avoidance of the affected
sites for at least 2–3 months, while prevention strategies
include rotation of injection sites with each injection,
using larger injecting zones and non-reuse of needles.

Necrobiosis lipoidica diabeticorum

These are well circumscribed, raised reddish lesions
sometimes progressing to central ulceration, usually
seen in the pretibial region. The reported preva-
lence in children varies from 0.06 to 1.6% (92, 93).
The etiology is not clearly understood but microan-
giopathy is thought to play a significant role (93).
Necrobiosis lipoidica has been associated with under-
lying microvascular complications including retinopa-
thy and nephropathy (94, 95). A wide variety of
treatments have been used, mostly in adults and
with limited efficacy, including: topical, systemic or
intra-lesional steroids, aspirin (with or without dipyri-
damole), cyclosporin, mycophenolate, nicotinic acid,
excision and grafting, laser surgery, hyperbaric oxygen,
topical granulocyte macrophage colony-stimulating
factor, and photochemotherapy with topical Psoralen
plus ultraviolet A light (PUVA) (93, 96). Few of the
treatment have been evaluated in randomized con-
trolled trials and many have significant side effects (93).

Limited joint mobility

LJM is a bilateral painless, but obvious, contracture
of the finger joints and large joints, associated with
tight waxy skin. Following its initial description in
the 1970s in association with short stature and early
microvascular complications, it was observed as a
common feature of type 1 diabetes (97, 99). However,
more recent studies indicate LJM is present in a
minority (∼4%) of adolescents with type 1 diabetes
(100). There was a >4 fold reduction in frequency
of LJM between the mid-70s and mid-90s, in children
(101) and a lesser decline in adults (102), with a marked
decrease in severity in the fewer children who were
affected, most likely the result of improved glucose
control during this era.

A simple examination method is to have the
patient attempt to approximate palmar surfaces of the
interphalangeal joints (103). Passive examination is
essential to confirm that inability to do so is due to
LJM. With rare exception, LJM appears after the age
of 10 yr. The interval between the detection of mild
LJM and progression to moderate or severe changes in
those who progress beyond mild changes, ranges from
a few months to 4 yr, following which stabilization
occurs (86).

Skin biopsy specimens have shown active fibrob-
lasts and extensive collagen polymerization in the
rough endoplasmic reticulum (104). The biochemical
basis for LJM is likely glycation of protein with
the formation of advanced glycation end products
(AGE). This results in increased stiffness of the
periarticular and skin collagen with decreased range of
motion. Fluorescence of skin collagen, reflecting the
accumulation of stable end products of the glycation
reaction, with increased crosslinking, dehydration,
and condensation of collagen, increases linearly with
age but with abnormal rapidity in type 1 diabetes
and is correlated with the presence of retinopathy,
nephropathy, vascular disease and LJM (105,106).

Similarly, LJM is associated with a twofold to four-
fold risk for retinopathy, nephropathy, and neuropathy
(98, 99, 107). Although cross-sectional studies showed
no relationship to glycemic control as measured by
HbA1c, a longitudinal study of average HbA1c from
onset of diabetes showed that for every unit increase
in average HbA1c, there was an approximately 46%
increase in the risk of developing LJM (108).

Edema

Generalized edema due to water retention is a
rare complication of insulin therapy, particularly
in young people (109, 105). Edema may be seen
during establishment of improved glycemic control
after initial diagnosis and after prolonged periods
of poor metabolic control, particularly if there has
been significant omission of insulin (111). The edema
spontaneously resolves over a period of days to weeks
with continued good glycemic control. In severe cases,
ephedrine has been an effective treatment (112).

Bone health

Type 1 diabetes is associated with osteoporosis and
an increased fracture risk, although data in young
people with type 1 diabetes are limited (113). Abnormal
bone accrual (density and quality) in type 1 diabetes
likely has a multifactorial etiology, involving reduced
bone formation and abnormal bone quality (114).
Two major determinants of bone strain in children
are muscle pull and growth. Insulin is anabolic to
muscle as well as bone, with many of the factors
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detrimental to bone development potentially impacting
on muscle or the relationship between muscle and
bone. Comorbidities such as celiac disease and thyroid
dysfunction can also negatively affect bone health in
type 1 diabetes, but the true extent of their impact
in children and adolescents is unclear. Therefore,
assessment of bone health using bone densitometry
should be considered in late adolescence in youth
with long duration of type 1 diabetes, especially if
complicated by celiac disease. Screening for vitamin D
deficiency, particularly in high-risk groups, should be
considered in young people with type 1 diabetes and
treated using appropriate guidelines (115, 116).
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